Intertribal Climate Adaptation Summit

November 10th, 2016
Hopland, Califorina
Lisa Micheli and Celeste Dodge

Basin Characterization Model

Size of arrows reflect relative magnitude of water flow

30 year average trends in McDowell Creek Watershed

Summer Temperatures

Winter Temperatures

Temperature Extremes

Three-day Heat Waves Santa Rosa Plain

Number of events of 3 or more days in a row where Tmax exceeds 95F for the Santa Rosa Plain.

	# of events	Tmax	Tmin
1981-2010	26	95.7	93.4
2010-2039	39	96.5	93.3
2040-2069	55	96.4	93.5
2070-2099	148	97.3	93.5

PCM wet model GFDL dry model

	Historical 1981-2010				
	February	March	April		
	52	8	5		
	Fut	ure 2040-2	069		
	February	March	April		
PCM A2	38	5	1		
GFDL A2	25	5	1		
PCM B1	87	11	1		
GFDL B1	24	6	1		
average	44	7	1		
	Future 2070-2099				
	February	March	April		
PCM A2	24	3	0		
GFDL A2	18	4	0		
PCM B1	34	7	0		
GFDL B1	31	6	1		
average	27	5	0		

Number of springtime days at or below freezing: Alexander Valley

(average for valley, does not account for cold air pools)

Climatic Water Deficit

Recent (1981-2010) mean Intercribal Climate Adaptation Summit - Climatic Water Delicit Historical (1951-1980) mean Crawford Credi Abriero Ademagament Areas Countles Waterbodies CWD (inches): 39.3 - 65.3 32.5 - 39.2 Ounçaa Springs CWD (Inches/year) 29.5 32.5 10.5 (0.7 24,8 - 29.5 125-363 JE Husterd REC 197-246 29.5 - 02.5 Ispland Flanchers 14.7 - 19.7 Patrolog Winnesteck 9,75000 9.8 - 14.7 Russian River Basin 42.001 4.3 - 6.8 9.5 (14.7) Stream Type 43-33 - Parenton 0.45 2,5 Personnel totarcritial Climate Adaptation Scromit - Climatic Water Delicit Recent (1981-2010) mean McDowell Creek Warm, Moderate Rainfall Crawford Cred 1950-1981-2040 2070 McDowell Ereek 1981 2010 2069 2069 29.0 29.3 31.2 32.2 Dancaa Spolings CWD (Inches/year) 30.3 -40.7 125-363 JE Hapterd REG 29.5 - 02.5 Ispland Flancheria Parenty Wiresunds Russian Rover Basin 95 (14.T) Stream Type 43.33 - Potential

totercritial Climate Adaptation Summit - Climatic Water Delicit
Warm, Moderate Karrfall (CCSM) rep 8.5) and of Century (2070-2099) mean

Warm, Moderate Rainfall

roemibal Clarate Adaptation Summit - Increases in (CWO) that Forest Hasonic Variability*.

Warm, Moderate Rainfall (CCStA4 rep.8.5) Mid Century (2040-2069) mean

inventibal Climate Adaptation Summit - Increases in (CWO) that Fureed Hazonic Variability*

Waters (Adaptation Battafall ACCSSAM con P. St. End of Careture (1979) 2088) may

Mid Century

End of Century

Average CWD Values, McDowell Creek:

Warm, Mod	lerate	Raintall	Hot,	Low Rain	nfall
20)40	2070	8	2040	2070
20	069	2069		2069	2069
21	2	32.2	if	32.3	35.0

Hot, Low Rainfall

Precipitation Moderate Rainfall Scenario

Intertribal Climate Adaptation Summit - Precipitation

Warm, Moderate Rainfal (CESIM4 rtp 8.5) Mid Century (2040-2060) mean

Intertribal Climate Adaptation Summit - Precipitation
Warm, Moderate Rainfall (CLSN4 rep 8.5) End of Century (2070-2039) mean

Water Supply (Runoff and Recharge) Moderate and Low Rainfall Scenarios

Intertribal Climate Adaptation Summit - Water Supply Over 30-Year Time Steps

McDowell Creek 1950-1981-1981 2010

24.4

24.6

Russian Water Supply (inches/year) River 0-4 4-8 Stream Type 8 - 12 Intermittent 12 - 16 Perennial 16 - 20 UC Hopland REC 20 - 24 Hopland Rancheria 24 - 28Planning Watersheds 28 - 32 Russian River Basin

Mid Century (2040-2069) means

Historical (1951-1980) mean

Warm, Moderate Rainfall (CCSM4 rcp 8.5)

Hot	Low	Rainfall	(Miroc-esm	rcp	8.5
1104	-	realition	framor cam	.cp	4.4

Warm,	Moderate	Raintall
	2040	2070
	2069	2069

	2069	2069
H	ot, Low Rain 2040	2070

End Century (2070-2099) means Warm, Moderate Rainfall (CCSM4 rcp 8.5)

Fire Probability

Vegetation Macrogroups and Climate Exposure of Vegetation

Intertribal Climate Adaptation Summit - Vegetation Cover Vegetation Macrogroups

Regional Pattern by End of Century (BAU)

*Percent of Russian Bodega WMA			End of Ce	ntury (2070	0-2099)
Vegetation Exposure Class	Recent (1981-2010)	CCSM	CNRM	Miroc
Unsuitable (80% to 95%)		4	14	9	10
Climate stressed (95% to 100%)		2	28	22	28
Highly Climate Stressed (99%-100%)		0	18	62	34
Climate Stressed (Non-Analog)	_	0	0	0	0

*Percent area excludes urban and ag lands

Adaptive Management Logic Model

DRIVERS	MECHANISMS OF CHANGE	IMPACT ON PRESERVE	MANAGEMENT RESPONSES
LAND USE: loss of	Reduced fire frequency,	Increased tree densities (saplings)	Forest thinning/fuels
indigenous land	reduced cultivation of native	in forests and woodlands, legacy	reduction, Conservation
management,	plants for food and fiber,	grazing impacts in grasslands	Grazing Program, site-
legacy impacts of	introduction of European	(compaction and erosion), road-	specific erosion control
19th century	livestock/ forage and	related erosion, gullying and	treatments for streams and
agricultural	overgrazing, alteration of	stream network incision, habitat	road network, prescribed
practices, 20th	wetlands and waterways, road	fragmentation on adjacent lands,	burns, invasive species
century habitat	construction, groundwater	invasive species introductions (see	control (see below)
conversion and fire	pumping and stream	below)	
suppression	diversions, land conversion		
	Intentional eradication,	Impacts to food chain (loss of top	Conservation grazing to limit
	overhunting, habitat loss,	predators including grizzly bear	non-native plants in
	competition with invasive	and wolf), reduced biological	grasslands, native plant
NATIVE SPECIES	species	disturbance (e.g., loss of elk	propagation and planting,
LOSSES		migrations), amphibian declines	avoiding disturbance of
			sensitive habitats during
			breeding/rearing seasons
	Intentional and inadvertent	Conversion of grasslands from	Hunting program for pigs
	introductions of non-native	predominantly native perennial to	and turkeys, invasive plant
	plants and animals	non-native annual grasses and	eradication using manual,
		forbs, feral pig and turkey	flaming and limited
INVASIVE SPECIES		predation of acorns and other food	herbicide applications,
		sources, loss of oak woodlands via	Douglas-fir removal,
		Douglas-fir invasions, invasive	prescribed burns
		plant species present throughout	
		preserve	
	Auto emissions cause aerial	Nitrogen additions increase soil	Biomass removal via grazing
DOLLUTION	deposition of nitrogen and	fertility, increase ammonia/ium	
POLLUTION	ozone	availability and soil acidity, shift in	
		species composition	
	Greenhouse gas emissions	Projected air temperature	Identify vulnerable
	cause global warming	increases on order of 5–10°F by	resources, promote
		2100, more variable rainfall, more	ecosystem resilience,
CLIMATE CHANGE		frequent droughts, increased	enhance watershed
		evaporation and climatic water	infiltration capacity, monitor
		deficits, shifts in species	
		composition, increased fire risks	

Thank you.

